首页> 外文OA文献 >Modulus spectroscopy of CaCu3Ti4O12 ceramics: clues to the internal barrier layer capacitance mechanism
【2h】

Modulus spectroscopy of CaCu3Ti4O12 ceramics: clues to the internal barrier layer capacitance mechanism

机译:CaCu3Ti4O12陶瓷的模量光谱:内部势垒层电容机制的线索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To date, all existing literature on the so-called 'high permittivity' perovskite oxide CaCu3Ti4O12 (CCTO) in the form of ceramics, single crystals and thin films show the grains (bulk) to exhibit semiconductivity with room temperature, RT, resistivity of similar to 10-100 Omega cm. Here we show that CCTO grains can be highly resistive with RT resistivity >1 G Omega cm when CCTO ceramics are processed at lower temperature (700 degrees C). With increasing processing temperature, the semiconducting CCTO phase commonly reported in the literature emerges from grain cores and grows at the expense of the insulating phase. For sintering temperatures of similar to 1000-1100 degrees C, the grains are dominated by the semiconducting phase and the insulating phase exists only as a thin layer grain shell/grain boundary region. This electrical microstructure results in the formation of the so-called Internal Barrier Layer Capacitance (IBLC) or Maxwell-Wagner mechanism that produces the commonly reported high effective permittivity at radio frequencies in dense ceramics. The relationship between Cu loss at elevated processing temperatures and the transformation of the grain resistivity from an insulating to semiconducting state with increasing processing temperature is also discussed.
机译:迄今为止,所有关于陶瓷,单晶和薄膜形式的所谓的“高介电常数”钙钛矿氧化物CaCu3Ti4O12(CCTO)的现有文献都显示出晶粒(大块)在室温,室温,电阻率下具有半导电性。到10-100厘米在此我们表明,当在较低温度(700摄氏度)下加工CCTO陶瓷时,CCTO晶粒的RT电阻率> 1 G Omega cm时具有很高的电阻率。随着加工温度的升高,文献中通常报道的半导电CCTO相从晶核出现,并以绝缘相为代价生长。对于类似于1000-1100摄氏度的烧结温度,晶粒以半导体相为主,而绝缘相仅作为薄层晶粒壳/晶粒边界区域存在。这种电微结构导致形成所谓的内部阻挡层电容(IBLC)或麦克斯韦-瓦格纳机制,该机制在致密陶瓷中的射频下产生通常报道的高有效介电常数。还讨论了在升高的加工温度下Cu损耗与晶粒电阻率随加工温度升高而从绝缘状态转变为半导体状态之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号